Three dimensional cube

Discussion in 'The Lounge - Off Topic' started by flex22, Sep 9, 2004.

  1. flex22

    flex22 Gigabyte Poster

    1,679
    0
    69
    Is their such a thing as 'a three dimensional cube.'
     
  2. Phoenix
    Honorary Member

    Phoenix 53656e696f7220 4d6f64

    5,749
    200
    246
    um a cube by definition is 3 dimensional isnt it?
    it has an x a y and a z axis
     
    Certifications: MCSE, MCITP, VCP
    WIP: > 0
  3. tripwire45
    Honorary Member

    tripwire45 Zettabyte Poster

    13,493
    180
    287
    What Ryan said...
     
    Certifications: A+ and Network+
  4. Cartman

    Cartman Byte Poster

    210
    0
    9
    Flex you silly boy. :biggrin


    Is that quite how you meant to phrase the question?
     
  5. Bull Gates

    Bull Gates Byte Poster

    154
    0
    33
    If theres such a thing as 'a two dimensional square',
    then there has to be a thing as 'a three dimensional cube.'8)
     
    Certifications: MCP
    WIP: MCSE
  6. tripwire45
    Honorary Member

    tripwire45 Zettabyte Poster

    13,493
    180
    287
    Ya know, flex...you may be onto something. Read this:

    "LOGAN, UTAH (SPACE.com) -- Experts say the big news in spacecraft building involves ultra-small CubeSats.

    These petite but powerful satellites are spearheading a hands-on revolution around the world. And what fist-sized CubeSats bring to space could mimic innovations sparked by the personal computer here on Earth.

    To look at them, you don't see much ...and that's a good thing. Its not a massive, expensive spacecraft that has been years in the making and loaded to its sprawling solar panels with super-electronics and other posh payload parts.

    A standard CubeSat is a motherboard of invention. It is a 4-inch (10-centimeter) block of equipment that tips the scale at roughly 2 pounds (1 kilogram). A handful are already in space and with other launches planned for later this year.

    Peep inside a CubeSat and you'll spot off-the-shelf circuitry in the familiar form of microprocessors and modem ports, and other microchip devices typically used in cell phones, digital cameras and hand-held Global Positioning System (GPS) satellite navigation units.

    CubeSats will be easier and more cost effective to deploy into orbit.
    Global congregation

    The American Institute of Aeronautics and Astronautics and Utah State University showcased the pint-sized payloads at the 18th annual Conference on Small Satellites, held here last month.

    The CubeSat initiative is a global congregation of universities and private firms striving to advance small satellite technology. Of the participating universities, more than 60 percent of CubeSat developers reside in the United States.

    In June 2003, six CubeSats were lobbed into orbit from Russia's Plesetsk launch site, executed by Eurockot Launch Services GmbH of Bremen, Germany.

    Later this year, if all stays on track, over a dozen universities from around the world will take part in hurling their CubeSats into space via a Dnper rocket. This launcher -- an SS-18 missile sans warhead -- has been rehabilitated into a "ride for hire" booster offered by ISC Kosmotras.

    "When we started this, I thought that it made sense for everybody to collaborate," said Robert Twiggs, professor and consultant at Stanford University's Department of Aeronautics and Astronautics and a pioneer in the rapidly growing world of small satellites. "I'm very pleased that it's going the way it is."

    Twiggs' main interest is in the development, launch and operation of small, econo-class orbiters to do feasibility demonstrations and to space-qualify new and novel components. He is also spearheading the miniaturization of space experiments for low-cost satellite missions.
    Good things coming

    A CubeSat can be built for under $25,000, although they typically come in at the $30,000 to $40,000 price range -- still a bargain. The "going-rate" per CubeSat launch is in the $40,000 range.

    There's already a CubeSat Kit being offered that gives a builder a leg up on turning a space mission into reality -- and meeting a launch date "on time and under budget," says one product brochure.

    Regarding what services CubeSats can perform, Twiggs said that he doesn't have the foggiest idea of what the "killer application" of the little satellites will prove to be. However, as for their utility, he's quick to respond.

    "The utility to me is to educate the students. The electronics are starting to get better...the efficiency of solar cells is going up...and in a couple of years they're going to be very capable little satellites. I think some good things are coming," Twiggs said.
    Freedom to fail

    Because the industry is new, "we don't know how it has been done so we're less constrained by the established way to solving the problem," said Michael Swartwout, assistant professor of mechanical engineering at the School of Engineering and Applied Science at Washington University in St. Louis, Missouri. "We can now finally play to our strengths...our enthusiasm."

    Universities have an inherent advantage, Swartwout contends, and that is the freedom to fail. In fact, he added, three of the six CubeSats placed in orbit in 2003 were either never contacted or failed very early.

    "Experimental failure is a basic element of university life, and from the university's perspective, a failed spacecraft is not necessarily a failed mission," Swartwout said.

    Swartwout explained that the tremendous reductions in the size and cost of electronics are making possible "disposable" probes that function for only weeks, but whose very low cost and short development cycle make their launch and operation affordable.
    Like personal computers?

    Big plans are afoot for CubeSats. There is talk about flying tethers on the spacecraft, as well as toting along inflatable packages -- both techniques viewed as a way to hasten a CubeSat's reentry and lessen worry about adding to already orbiting space clutter.

    CubeSat innovators also envision the small spacecraft deployed from the International Space Station -- chucked out of an airlock. Then there is the prospect of CubeSats toting biological or hardware experiments that reenter and parachute to Earth.

    "I hope the CubeSat is like the personal computer...you don't know what the heck you're going to do with this little box when you build it or what markets will be enabled. But it's so cool, you've got to do it," Twiggs concluded."
     
    Certifications: A+ and Network+
  7. flex22

    flex22 Gigabyte Poster

    1,679
    0
    69
    Interesting reading indeed.

    To be perfectly honest with you I wrote my question because it just came to me, in my thoughts out of seemingly nowhere.
    I just had to ask it, lol, just to see what would happen.

    Since then I have considered the meaning of the post, with some insights into the reasons for posting it, but your post Trip is very interesting.

    I've always been absolutey fascinated with cubes, but haven't got a clue why lol.I've only just started to really look into why, lol, but I still don't really know.I found my old school folder the other day, and there's hundreds of cubes drawn all over it.Geez why am I telling you this :oops: :oops:
     
  8. punkboy101
    Honorary Member

    punkboy101 Back from the wilderness

    942
    2
    62
    did you have a rubix cube that you never figured out as a kid Flex??? :biggrin
     
    Certifications: CCNA
    WIP: Nada
  9. flex22

    flex22 Gigabyte Poster

    1,679
    0
    69
    No rubix cubes I never bothered with.

    But my Grandads Hungarian, and wasn't Rubix Hungarian, hmm maybe there's a link there. :hhhmmm
     

Share This Page

Loading...
  1. This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
    By continuing to use this site, you are consenting to our use of cookies.